
      

 

   
 

 

 

 

 

 

 

 

 

 

 

Module 3 

Data Analytics with Python - Applied analytics 

Section: Analyzing data with python 

 

 

 

 

 

 



      

 

   
 

Pandas 

Pandas is an open-source library providing high-performance, easy-to-use data structures and data analysis tools for 

the Python programming language. 

Pandas is built on top of the NumPy package; hence it takes a lot of basic inspiration from it.  

The Data Structures provided by Pandas are of two distinct types 

1. Pandas Series 

2. Pandas DataFrame 

 
Series 
A Series is a one-dimensional object that can hold any data type such as integers, floats and strings. Let’s take a 
list of items as an input argument and create a Series object for that list. 

  

Output- 

 

Series also generates by default row index numbers which is a sequence of incremental numbers starting 
from ‘0’ 

 

 

import pandas as pd #importing pandas library 

series = pd.Series([5,4,8,9,25,6]) # creating series - its one dimensional data 

series 

 

0     5 

1     4 

2     8 

3     9 

4    25 

5     6 

dtype: int64 

 



      

 

   
 

Dataframe 

A DataFrame is a two-dimensional object that can have columns with potential different types. Different kind of 

inputs include dictionaries, lists, series, and even another DataFrame. 

It is the most commonly used pandas object 

Let’s create dataframe 

Example-1 

 

 

 

 

 

 

 

 

 

Output- 

 

 

 

dataframe_dict = {  

'name' : ["TOM", "DOM", "JACK", "TIM", "JESSI"], 

'age' : [32,45, 30, 40, 25], 

'designation': ["CEO", "VP", "SVP", "AM", "DEV"] 

} 

df = pd.DataFrame( dataframe_dict,  

index = [ "First -> ","Second -> ", "Third -> ", "Fourth -> ",  "Fifth -> "]) 

 



      

 

   
 

Properties of A DataFrame: 

• The axes attribute of DataFrame contains both the row axis index and the column axis index. 

• The shape attribute has the shape of the 2-dimensional matrix/DataFrame as a tuple. e.g., A shape of 

(2,1) means a DataFrame instance with 2 rows and 1 column, a shape (5,3) means a DataFrame instance 

with 5 rows and 3 columns. As shown in above example-1. 

• A DataFrame has several columns and rows to form its structure. 

• Each column can hold different types of elements. One column of a DataFrame can hold all integers while 

another column has all its elements as string. 

• A column itself can hold objects of several types. It is possible for a DataFrame column to have some of its 

members as integers and some as floats and the remaining elements as an instance of a class like 

complex. 

• A column with heterogeneous data elements will have its type as Object. 

• The Python above example-1 has a DataFrame with first column as object , second column as all integers 

and the last column with objects again. 

• The DataFrame attribute dtypes returns type of each column contained in a DataFrame series. 

  



      

 

   
 

NumPy  

NumPy (Numerical Python) is an open-source Python library that’s used in almost every field of science and 
engineering. It’s the universal standard for working with numerical data in Python, and it’s at the core of the 
scientific Python ecosystems. NumPy users include everyone from beginning coders to experienced researchers 
doing state-of-the-art scientific and industrial research and development. The NumPy API is used extensively in 
Pandas, SciPy, Matplotlib, scikit-learn, scikit-image and most other data science and scientific Python packages. 
 

• It is a powerful N-dimensional array object. 

• Sophisticated (broadcasting/universal) functions. 

• Useful linear algebra, Fourier transform, and random number capabilities. 

• NumPy can also be used as an efficient multi-dimensional container of generic data.  

 

Example-2 
 

 

 

 

 

 

NumPy datatypes 
 

NumPy supports a wider variety of data types than are built-in to the Python language by default. They 
are defined by the NumPy. dtype class and include: 

 
•  intc (same as a C integer) and intp (used for indexing)  
•  int8, int16, int32, int64  
•  uint8, uint16, uint32, uint64 
•  float16, float32, float64 
•  complex64, complex128 
•  bool_, int_, float_, complex_ are shorthand for defaults.  

 
These can be used as functions to cast literals or sequence types, as well as arguments. 
to numpy functions that accept the dtype keyword argument.  

  

import numpy as np 

civilian_birth = np.array([4352, 233, 3245, 256, 2394]) 

civilian_birth 

#output 

array([4352,  233, 3245,  256, 2394]) 



      

 

   
 

Importing excel sheets, csv files, executing sql queries

 
The pandas I/O API is a set of top-level reader functions to read and write different type of files we use this read 

function of pandas and store it in new dataframe. After importing desired file, we can run desired operation on 

that dataframe. 

Format Type Data Description Reader Writer 

text CSV read_csv to_csv 

text Fixed-Width Text File read_fwf 
 

text JSON read_json to_json 

text HTML read_html to_html 

text LaTeX 
 

Styler.to_latex 

text XML read_xml to_xml 

text Local clipboard read_clipboard to_clipboard 

binary MS Excel read_excel to_excel 

binary OpenDocument read_excel 

binary HDF5 Format read_hdf to_hdf 

binary Feather Format read_feather to_feather 

binary Parquet Format read_parquet to_parquet 

binary ORC Format read_orc 
 



      

 

   
 

binary Stata read_stata to_stata 

binary SAS read_sas 
 

binary SPSS read_spss 

binary Python Pickle Format read_pickle to_pickle 

SQL SQL read_sql to_sql 

SQL Google BigQuery read_gbq to_gbq 

 

Examples of Importing different file formats using pandas 

Import CSV File into Pandas. 

Function syntex 

pd. read_csv  (r‘Path where file is stored\Filename.csv’) 

Place "r" before the path string to address special character, such as '\'. 

Example-3 

 

 

 

 

 

Output 

import pandas as pd 

path = 'Pokemon.csv'     # define complete path of file location 

# Load the csv file into a data frame 

df = pd.read_csv(path) 

df 



      

 

   
 

 

Exporting CSV File into Pandas. 

To export dataframe to desired format we can use below ‘.to_’ function of pandas. 

Example-4 

 

 

Now data frame is saved as csv  

Similarly, we can use we can use below Import/Export functions for different type of files. 

 

Format Type Data Description Reader Writer 

text CSV  read_csv to_csv 

text Fixed-Width Text File read_fwf 

 

text JSON  read_json to_json 

text HTML  read_html to_html 

text LaTeX 

 
Styler.to_latex 

text XML read_xml to_xml 

text Local clipboard read_clipboard to_clipboard 

binary MS Excel read_excel to_excel 

binary OpenDocument read_excel 

 

binary HDF5 Format read_hdf to_hdf 

binary Feather Format read_feather to_feather 

binary Parquet Format read_parquet  to_parquet 

df.to_csv('Pokemon.csv') 

https://en.wikipedia.org/wiki/Comma-separated_values
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-read-csv-table
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-store-in-csv
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-fwf-reader
https://www.json.org/
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-json-reader
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-json-writer
https://en.wikipedia.org/wiki/HTML
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-read-html
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-html
https://en.wikipedia.org/wiki/LaTeX
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-latex
https://www.w3.org/standards/xml/core
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-read-xml
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-xml
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-clipboard
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-clipboard
https://en.wikipedia.org/wiki/Microsoft_Excel
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-excel-reader
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-excel-writer
http://www.opendocumentformat.org/
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-ods
https://support.hdfgroup.org/HDF5/whatishdf5.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-hdf5
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-hdf5
https://github.com/wesm/feather
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-feather
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-feather
https://parquet.apache.org/
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-parquet
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-parquet


      

 

   
 

binary ORC Format read_orc 

 

binary Stata read_stata to_stata 

binary SAS  read_sas 

 

binary SPSS  read_spss 

 

binary Python Pickle Format  read_pickle  to_pickle 

SQL SQL read_sql to_sql 

SQL Google BigQuery read_gbq to_gbq 

 

 

Executing SQL queries 

Example-5 

 

Output 

import sqlite3 

 

# create a database or connect to existing database 

conn = sqlite3.connect("mydb.db") 

# create a table 

 

query = "create table if not exists customers (cid int primary key not null, Name text 

not null, Age int not null, City text not null);" 

conn.execute(query) 

# inserting data into the table 

 

query = "insert into customers(cid,Name,Age,City) values(?,?,?,?)" 

conn.execute(query,(101,"Anshu",45,"Delhi")) 

conn.execute(query,(102,"Max",37,"Chennai")) 

conn.execute(query,(103,"Jenny",25,"Mumbai")) 

 
# select query = to fetch data 

 

query = "select * from customers" 

data= conn.execute(query) 

for row in data: 

    print(row) 

 

https://orc.apache.org/
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-orc
https://en.wikipedia.org/wiki/Stata
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-stata-reader
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-stata-writer
https://en.wikipedia.org/wiki/SAS_(software)
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-sas-reader
https://en.wikipedia.org/wiki/SPSS
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-spss-reader
https://docs.python.org/3/library/pickle.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-pickle
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-pickle
https://en.wikipedia.org/wiki/SQL
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-sql
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-sql
https://en.wikipedia.org/wiki/BigQuery
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-bigquery
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-bigquery


      

 

   
 

 

 

 

 

 

 

Selection of columns and Filtering Dataframes 

We can select a column from a dataframe by using the column name we want to select 

Example-6 

 

 

Output 

 

 

(101, 'Anshu', 45, 'Delhi') 

(102, 'Max', 37, 'Chennai') 

(103, 'Jenny', 25, 'Mumbai') 

df[['Name','Type 1','Attack']]    #select only Name,Type 1,Attack columns 



      

 

   
 

Filtering of data 

Data filtering is another powerful feature of Pandas 

You can create very powerful and sophisticated expressions by combining logical operations with the following 
operators: 

• NOT (~) 
• AND (&) 
• OR (|) 
• XOR (^) 

Example-7 

 

Output 

 

 

As you can see, we have 70 rows filtered by Type 1 = Grass which suggest we have 70 pokemon having Type 1 as 

grass in whole data set. 

  

new_df = df[df['Type 1'] == 'Grass'] # Filter rows containing Type 1 = 

Grass type (filtering grass type pokemon) 

new_df 



      

 

   
 

Descriptive Analysis with pandas 

Python Pandas is used to compute descriptive statistical data like count, unique values, mean, standard 

deviation, minimum and maximum value and many more. In this section let’s learn to get the descriptive 

statistics for Pandas DataFrame. 

Let’s create simple dataframe 

Example-8 

 

 

 

 

 

 

 

 

Output 

 

 

 

 

 

import pandas as pd 

 

data = {'name': ['Jason', 'Molly', 'Tina', 'Jake', 'Amy'], 

 

        'age': [42, 52, 36, 24, 73], 

 

        'preTestScore': [4, 24, 31, 2, 3], 

 

        'postTestScore': [25, 94, 57, 62, 70]} 

 

df = pd.DataFrame(data, columns = ['name', 'age', 'preTestScore', 'postTestScore']) 



      

 

   
 

We can use. Describe () function to compute descriptive statistical data of desired column. 

 

Example-9 

                                                                    

 

 

Output 

 

 

As shown above we can se there is 5 nos of row from count, mean of preTestScore data is 12 

minimum values of score are 2 and maximum score is 31. like this we can get statistical information   

about data which can help us to further evaluate the results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

df['preTestScore'].describe() # describing preTestScore column 



      

 

   
 

Other examples of functions used for descriptive analysis are as below.     

            

# The sum of all the ages 

df['age'].sum() 

 

# Mean of preTestScore 

df['preTestScore'].mean() 

 

# Cumulative sum of preTestScores, moving from the rows 

df['preTestScore'].cumsum() 

 

# Count the number of non-NA values 

df['preTestScore'].count() 

 

# Minimum value of preTestScore 

df['preTestScore'].min() 

 

# Maximum value of preTestScore 

df['preTestScore'].max() 

 

# Median value of preTestScore 

df['preTestScore'].median() 

 

# Sample variance of preTestScore values 

df['preTestScore'].var() 

 

# Sample standard deviation of preTestScore values 

df['preTestScore'].std() 

 

# Correlation Matrix Of Values 

df.corr() 

 

# Covariance Matrix Of Values 

df.cov() 

 

# Skewness of preTestScore values 

df['preTestScore'].skew() 

 

# Kurtosis of preTestScore values 

df['preTestScore'].kurt() 

 

 

 



      

 

   
 

Data Cleaning and Preparation 
Data preparation is one of the most important steps in data analysis and modeling.  

• A significant amount of time, i.e., close to 80% of the time, is spent in data preparation processes like 

loading, cleaning, transforming, and rearranging. 

• Pandas, along with many Pythons language features, provides a high-level, flexible, and fast set of tools 

for manipulating data in the right form. 

The most important data cleaning and preparation methods are as follows 

 

 

Handling Missing Data 

 

• Missing data normally occurs in many data analysis applications. 

• The way of representation of missing data in pandas’ objects is a little imperfect, but it is functional for a lot 
of users. 

• For numeric data, pandas use the floating-point value NaN (Not a Number) to represent missing 
data, which is called sentinel value. 

• Pandas uses a convention used in the R programming language by referring to missing data as NA, which 
stands for not available.  

• During data cleaning, it is very important to do the analysis on the missing data itself to identify 
data collection problems or potential biases in the data caused by missing data. 

• The two common techniques of handling missing data are as follows: 

• Filtering out missing data 

• Filling in missing data 

 



      

 

   
 

 

Filtering Out Missing Data 
 

• There are different ways to filter out missing data using Pandas. The most obvious way is to do manually 

using pandas.isnull and boolean indexing. 

• dropna is also helpful in filtering out missing data. When used on a Series, it returns the Series with only 
the non-null data and index values. 

• With DataFrame objects, we will drop rows or columns that are all NA or only those containing 
any NAs. dropna by default drops any row containing a missing value. 

• Another way of filtering out DataFrame rows tends to concern time series data. In case we need to keep 
only rows containing a certain number of observations. This can be indicated with the thresh argument. 

 
Filling in Missing Data 

 

• Another way of handling missing data is that filling the gaps in any number of ways. 

• In most of the cases, the fillna method is used, calling which with a constant replaces missing values with 
that value. 

• Calling fillna with a dict, different fill value can be used for each column. 

• fillna returns a new object, but the existing object in-place can be modified. 

• The same interpolation methods available for reindexing can be used with fillna. 
 
Removing Duplicates 

 

• Calling the method duplicated returns a boolean Series, which indicates whether each row is a duplicate 
(has been observed in a previous row) or not. 

• The drop_duplicates method returns a DataFrame where the duplicated array is False. 

• Both the duplicated and drop_duplicates methods consider all the columns, by default; but we can specify 
any subset of columns to detect duplicates. 

• duplicated and drop_duplicates methods by default keep the first observed value combination. Passing 
the argument keep='last' will return the last one. 

 

 

 

 

 

 

 

 



      

 

   
 

Examples-10 

 

 

 

 

 

 

# Drop missing observations 

df_no_missing = df.dropna() 

 

# Drop rows where all cells in that row is NA 

df_cleaned = df.dropna(how='all’) 

 

# Create a new column full of missing values 

df['location'] = np.nan 

 
# Drop column if they only contain missing values 

df.dropna(axis=1, how='all’) 

 

# Drop rows that contain less than five observations 

# This is really mostly useful for time series 

df.dropna(thresh=5) 

 

# Fill in missing data with zeros 

df.fillna(0) 

 
# inplace=True means that the changes are saved to the df right away 

df["preTestScore"].fillna(df["preTestScore"].mean(), inplace=True) 

 

# Fill in missing in postTestScore with each sex’s mean value 

of postTestScore 

df["postTestScore"].fillna(df.groupby("sex")["postTestScore"].transform 

("mean"), inplace=True) 

 
 

# Select some rows but ignore the missing data points 

# Select the rows of df where age is not NaN and sex is not NaN 

df[df['age'].notnull() & df['sex'].notnull()] 

 



      

 

   
 

Example of Deleting Duplicate values 

 

 

  

import pandas as pd 

# Create dataframe with duplicates 

raw_data = {'first_name': ['Jason', 'Jason', 'Jason','Tina', 'Jake', 

'Amy'],  

        'last_name': ['Miller', 'Miller', 'Miller','Ali', 'Milner', 

'Cooze'],  

        'age': [42, 42, 1111111, 36, 24, 73],  

        'preTestScore': [4, 4, 4, 31, 2, 3], 

        'postTestScore': [25, 25, 25, 57, 62, 70]} 

 
df = pd.DataFrame(raw_data, columns = ['first_name', 'last_name', 'age', 

'preTestScore', 'postTestScore’]) 

 

# Identify which observations are duplicates 

df.duplicated() 

df.drop_duplicates() 

 

# Drop duplicates in the  name column, but take the last obs in the 

duplicated set 

df.drop_duplicates(['first_name'], keep='last') 

 

 



      

 

   
 

Analyzing Outliers 

• Trimming: It excludes the outlier values from our analysis. By applying this technique our data becomes 

thin when there are more outliers present in the dataset. Its main advantage is its fastest nature. 

• Capping: In this technique, we cap our outliers data and make the limit i.e, above a particular value or less 

than that value, all the values will be considered as outliers, and the number of outliers in the dataset 

gives that capping number. 

For Example, if you’re working on the income feature, you might find that people above a certain 

income level behave in the same way as those with a lower income. In this case, you can cap the 

income value at a level that keeps that intact and accordingly treat the outliers. 

• Treat outliers as a missing value: By assuming outliers as the missing observations, treat them accordingly 

i.e, same as those of missing values. 

• Discretization: In this technique, by making the groups we include the outliers in a particular group and 

force them to behave in the same manner as those of other points in that group. This technique is also 

known as Binning. 

  



      

 

   
 

Feature Engineering 

• In machine learning, transforming raw data to an optimal set of features is important to increase 
the accuracy of the results. This process is known as feature engineering.  

• More the number of appropriate features, the greater the ML model can perform. For this, 
feature engineering enforces the data to be correctly represented. 

• This better representation of the problem to predictive models results in high accuracy of the model. 
 

 
 

 

• Feature engineering is the most changing part in creating a model that yields highly accurate results. 

• Since ML libraries take care of implementations, this process consumes more than three-fourth of the 
time. 

• Deciding these features are specific to the domain and so it requires domain expertise, practice and 
many trails & errors. 

• Generally, this process is iterative. It requires applying a technique, evaluating a model and checking if 
the accuracy has improved. 
 

 

 

 

 

 

 

 

  



      

 

   
 

Techniques in Feature Engineering 

 

 
 

Example for Feature Engineering 

 

Language Prediction 

Feature engineering is used in language prediction. Consider we’re given some statements in a language and 

we need to predict the language.  

 
 

 

 

 



      

 

   
 

Group by operations 

 
groupby() function is used to split the data into groups based on some criteria. pandas’ objects can be split 

on any of their axes. The abstract definition of grouping is to provide a mapping of labels to group names. 
Grouping records by column(s) is a common need for data analyses. Such scenarios include counting 

employees in each department of a company, calculating the average salary of male and female employees 
respectively in each department, and calculating the average salary of employees of different ages. Pandas has 
groupby function to be able to handle most of the grouping tasks conveniently. But there are certain tasks that 
the function finds it hard to manage. Here let’s examine these “difficult” tasks and try to give alternative solutions. 

groupby() is one of the most important Pandas functions. It is used to group and summarize records 
according to the split-apply-combine strategy.  

 

Groupby Statistical Analysis 
 The aggregation functionality provided by the agg() function allows multiple statistics to be calculated per 

group in one calculation.  
Instructions for aggregation are provided in the form of a python dictionary or list. The dictionary keys are 

used to specify the columns upon which you’d like to perform operations, and the dictionary values to specify the 
function to run. 

 
Refer below example for better understanding. 
 

 
 



      

 

   
 

Summary 
• Pandas has two types of data structure series and data frames 

• A DataFrame is a two-dimensional object that can have columns with potential different types. 

• The NumPy API is used extensively in Pandas, SciPy, Matplotlib, scikit-learn, scikit-image and most other 

data science and scientific Python packages. 

• Pandas can be used to work with different type of files like-Excel, CSV,Tex,tSQL,Web data, Image. 

• Python Pandas is used to compute descriptive statistical data like count, unique values, mean, standard 

deviation, minimum and maximum value and many more. 

• Data frames can be filtered using You can create very powerful and sophisticated expressions by combining 

logical operations like- NOT (~), AND (&), OR (|), XOR (^). 

• The two common techniques of handling missing data are - Filtering out missing data & filling in missing data. 

• In machine learning, transforming raw data to an optimal set of features is important to increase 

the accuracy of the results. This process is known as feature engineering.  

• groupby() function is used to split the data into groups based on some criteria. pandas’ objects can be split 

on any of their axes. The abstract definition of grouping is to provide a mapping of labels to group names. 

 
 

 

 

 

 


